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EXPERIMENTAL OPTIMIZATION METHODS

FOR MULTI-ELEMENT AIRFOILS

Drew Landman* and Dr. Colin P. Britcher t

Abstract Traditional 2-D Testing Methods

A modem three element airfoil model with a

remotely actuated flap was used to investigate optimum flap

position using an automated optimization algorithm in wind
tunnel tests. Detailed results for lift coefficient versus flap

vertical and horizontal position are presented for two angles
of attack: 8 and 14 degrees. An on-line first order optimizer

is demonstrated which automatically seeks the optimum lift

as a function of flap position. Future work with off-line

optimization techniques is introduced and aerodynamic

hysteresis effects due to flap movement with flow on are
discussed.

Introduction

An earlier paper l, presented the design of an
automated 3-element wind tunnel model which utilizes

computer controlled internal actuators to move the flap

vertically and horizontally while the flow is on. It is used to
find the optimum flap location (gap and overhang) for a

given angle of attack, slat position, and flap deflection
angle. It spans the full tunnel width and is instrumented to

measure pressure from mid-span taps on all elements. The
airfoil model shown in figure 1, has a nested chord of 18",

span of 36" and was designed for low speed testing in the
NASA Langley 2' x 3' and the Old Dominion University 3'

x 4' low-speed facilities.
The model has been used to compile baseline

values for lift coefficient (C I) versus flap vertical and

horizontal position at fixed angle of attack and slat rigging.

Optimization can be approached either in more or less real
time, or by post test processing. In this paper we
demonstrate the use of a real time first order "method of

steepest ascent ''2 algorithm to optimize C I.

An important practical problem in wind tunnel

testing of multi-element airfoils is the requirement to test a

range of configurations, in order to ensure that the optimum
is chosen. Unfortunately, this is a very time consuming
affair if one considers all the variables such as flap position
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Figure 1 3 element model with flap actuators
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and deflection, slat position and deflection, overall angle of
attack and of course Reynolds number. For example, a

range of flap locations and orientations relative to the main
element are typically tested. In a cryogenic or pressurized

facility, model geometry changes necessitate lengthy

delays in testing as the test section is cycled between test
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andambientconditionsfortechnicianaccess.Thisoften
resultsininvestigatorschoosingaverysparsetestmatrix
andchoosinganoptimumbasedonveryfewpoints.3'4If
themodelgeometrycouldbechangedwithflowon,test
efficiencyand the opportunityfor moredetailed
aerodynamicstudieswoulddramaticallyincrease.While
themodelusedinthisexperimentissuitableforlowspeed
testingonly,theproceduresdevelopedshouldberelevantto
higherspeed(q)testingaswell.Theabilitytomovethe
flapundercomputercontrolprovidesauniqueopportunity
to exploretheentirerangeof usefulgapandoverhang
values.

Experimental Method

Cp

Slit Main Element Flap
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The flap actuators, tunnel controls, and data

acquisition system were all controlled from a personal
computer running LabView © software. In this way tests

can be run entirely autonomously. Two major LabView

programs were written; the first allowed any number of

points in x,y space (flap position) to be sampled in any
order, and the second was the on-line optimizer. Wind

tunnel power was controlled by both programs so at the

beginning of each test the tunnel could be restarted,
essential for avoiding hysteresis effects (discussed later).

The experimental setup allows the user to start a program
which, at each location in turn, automatically measures

Figure 2b Pressure distribution - separated flow on flap

and the plot for figure 2b indicates full separation on the

flap. The points can be cross referenced to the contour plot

of figure 4 discussed later.
Positional accuracy was enhanced by requiring

that the flap move to a reference point above and behind
the desired evaluation point (x=e > Xe_al,Yree> Yeval)then

back to the evaluation point. This removed any effect of
backlash in the mechanical drivetrain. Two simple tests

provided insight into the inherent collective error due to

................... free.str.eam properties,., samples
around the centerline of the model, and then calculates lift

coefficients for the 3 element airfoil. Two typical pressure

distributions are shown in figure 2 where the ordinate is

pressure coefficient (Cp) and the abscissa is expressed as

percent of nested chord (flap retracted). The data for figure

2a represents a point near optimum C_ for this configuration
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Figure 2a Pressure distribution - near optimum

separate evaluation points; the first point was in a region
where the flow was known to be fully attached to all

elements, the second point chosen was in a region where

flow over the flap was fully separated. The positioning

program was used to move the flap between a reference

point and one of the evaluation points. The tunnel was
restarted before every evaluation and the test was repeated
30 times in each case. The standard deviation of C l found

was 0.004 for the separated case (.16%) and 0.0118 for the

attached case (.36%). The second test used the program to

automatically sample 29 points over the entire test region

(x,y space) for two different trials. The error in C l between
the two runs averaged 0.71% with a standard deviation of
0.75%. While these tests are not exhaustive they do provide

a benchmark for the error in C v
The turbulence intensity in the Old Dominion

University 3' x 4' low speed wind tunnel I was measured as

less than 0.2 %. Flow quality over the model was

monitored through 12 spanwise taps, 6 on the flap, 6 on the
main dement. The flow was considered two dimensional if

the magnitude of the spanwise nonuniformity was less than
5% of the total pressure coefficient (Cp) variation over the

whole model. 5 All data presented is uncorrected for

American Institute of Aeronautics and Astronautics



boundaryeffectsandisforaReynoldsnumberof 1x 106
basedonnestedchord.

Baseline Lift Coefficient Data

Test matrices were developed to survey gap and

overhang values which ranged from approximately 0.8 to

3.5 percent of nested chord (%c) and -0.4 to 3.4%c

respectively (figure 3 defines gap and overhang). Two slat

geometries and two angles of attack were selected. An 8
degree angle of attack was chosen as representative of an

approach value. The 14 degree angle of attack represents

the limit of good quality 2 dimensional flow for the ODU
tunnel installation without tunnel wall boundary layer

control. The 2 slat settings chosen include a slat gap of

3.03%c, slat overhang = - 2.46%c and for a smaller gap

setting, slat gap = 2.17%c and slat overhang = -1.46%c.

_t=8*

gap,= 2.17

4.0 F o.h._ = -1.46
i.

[C Re¢ = I xl 0a

o.
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0 1 2 3
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Figure 5 Lift coefficient contours for flap position in

terms of gap and overhang
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Figure 3 Definition of gap and overhang

ct=8 •

gap,= 2.17

o.6 o.h._ = -1.46

Re =Ix10 I

O.4 _

14.4 14.9 14.6 14.7 14,8 14.9 IS.O

x (inches)

Figure 4 Lift coefficient contours for flap position x,y
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Figure 6 Lift coefficient contours for flap position x,y

For all Me cases run, the main element trailing edge is

located at x = 14.95", the distance along the chord line from

the origin of the main airfoil. The flap is 30%c (of the
nested chord of 18") l and the slat is 14.5%c, both are

deflected at 30 degrees. Baseline data is shown in figure

4 in the form of a contour plot of C I versus x,y position of

the flap origin. The same data is displayed as a function of

flap gap and overhang in figure 5. The plot shows a broad

plateau of approximate length 1.5% c and height 0.5% c.

This is typical for an approach angle of attack and shows
that the optimum is not sensitive to small changes in gap

and overhang. Figure 6 shows a contour plot of C l versus

flap position for the 14 degree angle of attack. It is

interesting to note the more defined optimum and its
location. Clearly the optimum point is reached with a

smaller flap gap and less overhang than the 8 degree case.

3
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Optimization Technique

The success of optimizing algorithms is largely

dependent on the character of the objective function. 6'7 The

objective function for this first experiment is the lift
coefficient with the vertical and horizontal position of the

flap as the design variables. Fixed parameters include
angle of attack, flap and slat deflection angle, slat rigging

(gap and overhang) and freestream velocity. A behavioral
constraint in the testing of airfoils is the degree of

separation desired. Figure 2 represents the two extremes

for flap separation, namely an optimum loaded flap versus
a stalled flap. An important requirement in this application

is the choice of an optimization technique which employs a
minimum number of data points. Test efficiency

considerations preclude reliance on large data sets with the
associated fitting of complex objective functions.

The first optimization method to be tried was a

first order gradient method or variant of the "method of

steepest ascent". In this application, this method relies on

sampling three closely spaced points to define a plane. The

points form an equilateral triangle. The gradient is then
calculated and a move is made in the direction of the

gradient (steepest slope) to a new point where the process

is repeated. The centroid of the triangle formed by the three
points is used to evaluate the lift coefficient. The

magnitude of the gradients for the 2 successive calculations
is used to scale the distance moved to the next point. 2 The

choice of the scaling factor is important since it directly

influences the number of points used to reach an optimum.

The calculation proceeds until a local maximum is attained
within a desired tolerance. The method has the potential for

locating an optimum with relatively few samples, but

requires good resolution of the objective function (see

reference 7).

Optimizer Algorithm

In general the equation for a plane through 3

points of the C 1versus x,y surface is given below.

Ct. a ,, bx . cy

d C d
v(c_ ). -_ t i • _c t j

The unit direction for the plane formed by the first three

points is:

bo i * co j

N '• ¢0

The centroid of the first three points (x o, Yo) is the first

evaluation of Cl used to begin the optimization. Using a

fixed scaling factor S o , the next centroidal point (xl,yl) is
calculated:

b0 c0
x t . x0 ÷ s o Y_" Y0"so"

N 2 N =* CO * CO

Now three points about x I, y_ can be used to calculate the

gradient for the new location. Subsequent points are

computed using a scaling factor based on local slope and
the distance between previous points:

b l Cl
Xt, 1 " x I * 8 i Yt.l " Yt * Si_

÷ C t + CI

Where the scaling parameter is:

[__.l(x x,)2 fY,.t y,)2
S: - , _V_ l,l " * -

S i can be limited by a maximum value to prevent extreme
moves in areas of steep gradients. Now the algorithm can

be reapplied until Cl is within some convergence criterion.

Choosing 3 points, the 3 resulting equations can be solved
for b and c. The gradient defines the direction of steepest

slope for the plane formed by the three points. If i and j

represent unit vectors in the x and y direction respectively,

then the gradient is defined as:

Resul_

The algorithm was demonstrated successfully for

6 runs in 6 attempts at the 8 degree angle of attack. In each

case a starting point was chosen away from the optimum

position as found in the baseline studies. Optimizer paths

4
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aresuperimposedonthecontourplotsoflift coefficient
versusflappositionforthetwoslatriggingsinfigures7and
8.Thestartingpointsforeachpatharealwaysthelower
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Figure 7 Optimizer paths

rapid ascent into the aforementioned plateau of maximum

Ct , followed by a slow procession towards the optimum.

For example, examining any of the paths on figure 7, it is
noted that the data points are more closely spaced at the end

of the run versus the beginning. The wandering evident in

the near-optimum area is due to sampling noise

(experimental error) and it can be seen that the lift
coefficient is now within 0.7 % of the optimum value.
Similar results were found in the second case shown in

figure 8.
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Figure 8 Optimizer paths

Future Work - Optimization

Work is continuing to refine the performance of

the gradient-based optimizer. The main concern is to
reduce the number of samples (evaluations of C 1) to the

absolute minimum. Figures 7 and 8 show on the order of

60 samples to approach the optimum. It is believed that this

can be substantially reduced.

Many off-line optimization methods exist for

finding optimum values of response surfaces. The current
focus is on implementing a "surrogate" method for surface

fitting through a matrix of C l (x,y) values. 8 The approach
taken is to obtain a matrix of C 1 values and then apply

surface fitting schemes to various subsets of interest as well
as to the entire design space. A numerical optimizing

algorithm can then be run in the neighborhood of the local
maxima to determine the optimum value. The density of the
matrix can be varied to try and establish a lower bound for
a minimum data set and random validation points can be

incorporated to provide a desired confidence in the

optimum. Furthermore, the surrogate approach allows the
investigator to easily add additional data to a baseline set.

Results from this phase of the project will be the subject of

a future paper.

Future Work - Hysteresis

Lift hysteresis has been studied as a function of

angle of attack on single element airfoils and recently on
multi-element airfoils 9. One of the benefits of working with

actuators capable of moving the flap while the flow is on is

to investigate lift hysteresis as a function of flap position.

Any irreversibility due to the path chosen for the flap could

influence flight performance. This is particularly of interest
in a multi-element system that is stowed for cruise and then

deployed in one or more configurations for different flight

phases such as takeoff and landing. An initial investigation,
using a single degree of freedom, consisted of starting the
tunnel and then moving the flap along a path of constant x

or y value. Paths are shown in figure 9; their choice is
based on either a full pass across the design space, or a

transition from higher to lower values of the lift coefficient
and vice versa. In each case the path is followed in one

direction while the flow remains on, the tunnel is stopped,

started again, and the path is traversed in the opposite

direction. Figure 10 shows results from the path given in

figure 9 at y --0.4 which represents a path connecting an

optimum region, where flow over the flap is fully attached,
to one of fully separated flow over the flap. Clearly a

hysteresis loop is evident and upon examination it can be

seen that the path of increasing x and decreasing x converge

5
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Figure 9 Hysteresis paths

in the optimum region. The path of increasing x (flap
moving aft) tends to delay separation on the flap, hence the

"higher lift values. It should be noted that "conventional" test

techniques (i.e. starting the tunnel for each new geometry)
would not reveal the higher performance. The path of

decreasing x more closely follows the contour plot given in

figure 9. It should be noted that the Cl values presented

are sli_tly higher than those of figure 9. This is attributed
to error in the angle of attack setting following a model

change - the data is self consistent.

Conclusions

A research program is underway which is aimed

at developing optimization methods to provide efficient

testing of multi-element airfoils in wind tunnels. A 3-
element model with internal actuators moving a flap in two

degrees of freedom is in use as the aerodynamic test-bed
for the development effort. Baseline data sets have been
established to allow evaluation of optimizing algorithms

based on a first order gradient method, which uses lift

coetticient as the objective function. Future work includes

use of off-line optimizing methods and detailed studies of

lift hysteresis due to flap position which will be the subject

of future publications.
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Abstract

The incorporation of experimental test data into the

optimization process is accomplished through the

use of Bayesian-validated surrogates. In the surro-

gate approach, a surrogate for the experiment (e.g.,

a response surface) serves in the optimization pro-
cess. The validation step of the framework provides

a qualitative assessment of the surrogate quality, and

bounds the surrogate-for-experiment error on designs

"near" surrogate-predicted optimal designs. The util-

ity of the framework is demonstrated through its ap-
plication to the experimental selection of the trailing

edge flap position to achieve a design lift coefficient
for a three-element airfoil.

Introduction

To address the inherent difficulties in examining

many design points experimentally, a three-element

airfoil model with internally embedded actuators has

been developed. 1 The model (Fig. 1) has a nested

chord of c -- 18 in., a span of b -- 36 in., and was de-

signed for low-speed testing in several local tunnels,

*Research Scientist, Member AIAA

tAssociate Professor, Member AIAA

Professor
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Figure 1: Three-element model with internal

flap actuators.

including the NASA Langley Research Center 2- by

4-foot and the Old Dominion University (ODU) 3- by

4-foot low-speed facilities. The main element chord

is cmain = 14.95 in., and the flap and slat chords

(expressed as a percentage of the nested chord) are

30 and 14.5 percent, respectively. The flap and slat

are both deflected to 30 ° for all tests. Although this

particular model is suitable only for low Reynolds

number testing, the techniques developed should be

applicable to higher Reynolds number testing as well.

The flap actuators are computer controlled and po-

sition the flap horizontally and vertically (x and y,

respectively). The model has been used in the ODU

tunnel to compile baseline values for lift coefficient

Ct versus flap gap and overhang at fixed angles of

attack and slat riggings. A first-order optimizer that
uses a variant of the method of steepest ascent 2,3 has

been demonstrated in real time. 4 The capability of

the computer controller to automatically take data



at a prescribedsetof '(x,y) coordinates makes this

setup ideal for the surrogate methods described next.

The Bayesian-validated surrogate framework ap-

plied in this paper provides a practical means to in-

corporate experimental data directly into the design

optimization process. In the surrogate approach to
optimization, a surrogate (i.e., a simplified model,

for example a response surface) for the experiment is

constructed from off-line appeals to the experiment.

The surrogate is then used in subsequent optimiza-
tion studies. This approach to optimization can be

contrasted with on-line (direct insertion) strategies,

in which appeals to the experiment are embedded di-

rectly into the optimization process.

The off-line surrogate approach 5- s to optimization

offers several advantages to on-line approaches. First,

by construction, surrogates are computationally in-

expensive and are thus easily incorporated into op-

timization procedures. Additionally, the low com-

putational requirements create a highly interactive

and flexible design environment, which allows the de-

signer to easily pursue and examine multiple design
points. Second, the number of appeals to the experi-

ment or simulation is known a priori, which ensures

that the design can be accomplished without exhaust-

ing available resources. Third the surrogate approach

offers a natural means to incorporate data from pre-

vious runs and/or other sources.

As regards disadvantages, the primary drawback is

that in high dimensional design spaces, surrogate con-
struction is difficult and design localization is poor. A

second limiting factor in the application of the surro-

gate approach to experimental tests is the need to
validate the surrogate at input points chosen ran-

domly in the design space. This capability, present in

the experiment central to this work, is not typical of

most experimental tests. Finally, surrogate-based op-
timization introduces a new source of error. The sur-

rogate validation strategy and error norms discussed

in this paper seek to quantify the discrepancy be-

tween the surrogate and the experiment by providing

estimates to the system predictability and optimality.

In this paper, we first describe the experimental

model and the testing methods used. Second, we

present the optimization problem that is central to

the work. Third, we briefly describe the three steps

of the baseline surrogate framework (i.e., construc-

tion/validation, surrogate-based optimization, and a

posteriori error analysis), summarize the inputs to
the framework, and then present an overview of the

more sophisticated surrogate algorithms. Finally, we

present sample results obtained from the surrogate

framework for output maximization and multiple-

target designs, and compare the surrogate approach

- + Overhang

Figure 2: Definition of gap and overhang.

with the direct insertion results reported previously. 4

Experimental Testing Methods

An important practical problem encountered in wind-

tunnel testing of multielement airfoils is the need to

test a range of configurations to ensure that the op-

timum is selected. Unfortunately, this testing can

be prohibitively time consuming if one considers all

possible variables, such as flap position and deflec-

tion, slat position and deflection, overall angle of at-
tack, and Reynolds number. For example, a range of

flap locations and orientations relative to the main

element is typically tested. In a cryogenic or pres-

surized facility, model geometry changes necessitate

large delays in testing. These delays often result in

investigators choosing a sparse test matrix and an op-
timum that is based on only a few points. The ability

to move the flap under computer control provides a

unique opportunity to explore the entire range of use-

ful gap and overhang values (Fig. 2).

In this experiment, the flap actuators, tunnel flow

setting, and data acquisition were controlled by a per-

sonal computer running Lab View 9 software. A pro-

gram was written to allow any number of flap posi-

tions (in x and y) to be sampled in any order. Wind

tunnel power was controlled such that at the begin-

ning of each test the tunnel was restarted to avoid

hysteresis effects. 4 The experimental setup allowed

the user to start the program, which at each loca-

tion in turn automatically measured the free-stream

properties, sampled and recorded pressures around

the centerline of the model, and then calculated lift

coefficients for the three-element airfoil. This process

required approximately 2 min. for each data point.

Two typical pressure distributions are shown in

Figure 3, where the ordinate is the pressure coeffi-

cient Cp and the abscissa is distance from the leading

edge expressed as a percent of the nested chord. The

data for Figure 3(a) represents a point near the peak
Ct for this configuration, and the plot in Figure 3(b)

2
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Figure 3: Experimental pressure data.

indicates full separation over the flap.

Test matrices were developed to survey flap po-

sitions, which ranged from approximately 0.8 - 3.5

percent (gap) and -0.4 - 3.4 percent (overhang) rel-

ative to the nested chord c. Two angles of attack

and two slat geometries were selected. An angle of

attack a of 8 ° was chosen as representative of an ap-
proach value. An a of 14° represented the limit of

good-quality two-dimensional flow for the ODU tun:

nel installation without tunnel wall boundary-layer
control. Two slat settings were chosen: a slat gap of

3.03 percent with an overhang of 2.46 percent and,

for a smaller gap setting, a slat gap of 2.17 percent

with a slat overhang of -1.46 percent

Positional accuracy was enhanced by requiring that

the flap move to a reference point above and be-

hind the desired evaluation points (xTel > xeval,

Yref > Yewl ) and then back to the evaluation point.
This eliminated any effect of backlash in the mechan-

ical drive-train. Two simple tests provided an indi-
cation of the inherent collective error due to instru-

mentation and positioning. The first test involved

two separate evaluation points; the first point was

in a region in which the flow was known to be fully

attached to all elements, and the second point was

chosen in a region in which flow over the flap was

fully separated. The positioning program was used

to move the flap between a reference point and one

of the evaluation points. The tunnel was restarted

before every evaluation, and the test was repeated 30

times in each case. The standard deviation of Cz was

found to be 0.004 for the separated case (0.16 per-

cent) and 0.0118 for the attached case (.36 percent).

For the second test, the program automatically sam-
pled 29 points over the entire test region for two dif-

ferent trials. The error in Ct between the two runs

averaged 0.71 percent with a standard deviation of

0.75 percent. Although these tests are not exhaus-

tive, they do provide a benchmark for the Ct error.

The turbulence intensity in the ODU tunnel was

measured at less than 0.2 percent. Flow quality over

the model was monitored through 12 spanwise taps: 6

on the flap, and 6 on the main element. The flow was

considered to be two-dimensional if the magnitude of
the spanwise nonuniformity was less than 5 percent

of the total Cp variation over the entire model, l° The
data presented are uncorrected for boundary effects

were taken at a Reynolds Re number of 1 x 106 based
on the nested chord.

Optimization Problem

We begin by introducing a vector p of M design

inputs that lie in the input (or "design") domain

C _M, an input-output function Sip ) : _ -+ _,

and an objective function _(S(p), p, A) that charac-

terizes our design goals, where A is a vector (or possi-

bly scalar) design parameter. For the work presented

here, we set p = (x, y) (the x- and y-positions of the

flap) as the M = 2 inputs and restrict ourselves to

an input domain _ of reasonable flap positions (de-

scribed in more detail in the results section). The out-

put of interest is the lift coefficient, Sip) = Ct(x,y).

The objective function is _($(p), p, )_) = ]Sip ) -
which has been referred to as the "discrimination"

problem. 11

With the above terms defined, the minimizer p* =

(x*, y*) to the exact optimization problem is given by

p* = argmin 18(p) - AI. (1)
pE_Z

In this formulation, the goal is to find that (or "an")
input vector p* = i x*, y*) that achieves as closely as

possible the target lift coefficient value A. If the tar-

get lift coefficient A is set sufficiently small (large), the

formulation describes the output minimization (max-

imization) problem, assuming that Sip ) is bounded

from below (above).

3
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In theon-lineapproach,theexperimentis invoked
at everyoptimizationstepneeded to solve Effuation

(1). In the off-line approach, a surrogate, S(p)

S(p), for the experiment is inserted into the opti-

mization problem. The minimizer, _* = (5*, _*), for

the resulting, surrogate-based, discrimination prob-

lem is then given by

P* = arg p_ Ig(p) - nl. (2)

Here, the optimization proceeds exactly as it would

for the on-line approach, but the lift coefficient surro-

gate ,_(p) is invoked instead of the experiment. The

surrogate problem that corresponds to Equation (1),

but with a general objective function _(S(p), p, A),
has been reported by Ye_ilyurt 12 and Ye_ilyurt and
Patera. s

Surrogate Framework

The advantages to pursuing a surrogate-based ap-

proach to optimization have already been described.

However, to use a surrogate-based approach with con-

fidence in a design setting, the issues of predictabil-

ity and optimality must be addressed. 13 For pre-

dictability, the concern is with how the actual ex-

periment performs in the vicinity of the surrogate-

predicted minimizer _*. If the surrogate-predicted
minimizer is to be of value, we must be able to bound

[S(p') -S(_*)[ for p' "near" _*, and this bound

must be acceptably small. In the case of optimality,

the designer requires confidence that the surrogate-

predicted optimizer _* is near the "exact" optimizer,

that is, _* _ p*. Optimality requires stronger as-

sumptions in regard to the form of the objective

function (e.g., quasi-convexity) and is, therefore, dif-

ficult to determine in real applications. Optimal-

ity is, however, an important consideration and, al-

though not addressed further here, has been exam-
ined elsewhere, s J2

The distinguishing attribute of the Bayesian-

validated surrogate methodology is that a com-

plete and rigorous validation step is fully inte-

grated into the a poster/ori error analysis of the

surrogate-predicted design(s). The approach de-
scribed here is related to probably-approximately-

correct approaches 14'15 and information-based com-

plexity theory. 16 The surrogate approach differs,

however, from the former in that it is truly non-

parametric (no assumption is made in regard to the

distribution of _*) and from the latter in that it re-

quires no regularity estimates for the input-output
function.

The surrogate approach is broken into three steps.

In the first stage, surrogate construction/validation,

experimental results and/or prior information are

used to construct the approximation, S(p) _ S(p);

additional queries to the experiment are used to val-

idate the approximation. In the second step of the

process, surrogate-based optimization, solutions to

surrogate optimization problem of Equation (2) are

obtained. In the third and final step, a poster/-

ori error analysis, the results of the validation are

used to analyze the consequences of the surrogate-for-

simulation substitution. In the following subsections,

we describe the three steps of the baseline surrogate

framework, summarize the inputs to the framework,

and review the more sophisticated surrogate algo-
rithms.

Construction/Validation

We construct the lift coefficient surrogate S(p) =

A(X c°) _ S(p) using an approximation scheme,

A : (_M,_) N°° --+ L°°(f_) and a construction sam-

ple set of input-output pairs

X c° = {(pi,Rp,),i = 1,... ,NC°}, (3)

where Rp, = Ct(xi,yi) is a realization of the experi-
mentally measured lift coefficient for the input flap

position pi = (xi,yi), and N c° is the number of
input-output pairs in the construction sample. Al-

though the general surrogate framework can handle
noisy outputs, 17 the noise contribution is neglected in

the work presented in this paper. Information from

prior studies, outside sources, or asymptotic behav-

ior can also be incorporated into the approximation

process. It is important to note that the surrogate

framework makes no assumptions in regard to the

approximation technique and will accept, and assess,

any approximation A(Xc°). Also, no restriction is
placed on either N c° or the distribution of the con-

struction sample.

To proceed with the description of the surrogate

validation, we first introduce the importance function

p(p). The importance function serves as a probability

density function for the selection of the validation

points:

_ p(p)dp = 1. (4)

The importance function also leads to the notion of a

p-measure associated with p(p): for any subdomain
_)C_,

pp(Z)) =/9 p(p)dp < 1. (5)

The p--measure of 7) is simply the weighted relative
M-volume of D.

4
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With the importancefunctionp(p) defined, we

form the validation sample set

X va = {(Pi,Rp,),i = 1,... ,Nva}, Pi "_ P(P), (6)

where the input flap positions Pi for the validation

sample set are drawn randomly according to the prob-

ability density function p(p). In Equation (6), the ~
should be read as "is drawn according to the proba-

bility density function." The validation sample size

N va is given by

NV a _ In _2
ln(1 - el)' (7)

and el and e2 are the two uncertainty parameters
described below. The model prediction error U is

computed from the validation sample set X va as

[Rp, - S(P_)[
U = max (8)

P, ex_," 0(Pi) '

where X{_a denotes the input points of the validation

sample set and O(p) is a strictly positive, error-scaling
function described in more detail later•

The result of the construction/validation process

is a probabilistic statement that describes the global
quality of the surrogate S(p). The validation state-

ment can be compactly written as

Pr{#p(T) < el} _> 1 - e2, (9)

where Pr{event} is the "probability of event" and

T C f_ is the uncharacterized region defined as

T = {p E f_l IS(p) - S(P)I > U_(p)} . (10)

The p-measure of the uncharacterized region is

bounded by el, and the significance level of the non-

parametric statistical bound is e2. This result can be

readily proved 12 with order statistics, is

For the simple case of _(p) = 1, Equation (9) states

that, with probability greater than or equal to 1- e2,

the surrogate error is bounded by U over a region of

[_ of p-measure greater than 1 - el. Although this

statement is suggestive, it gives neither an indication

as to the location of T nor the magnitude of the sur-

rogate error in T.

Surrogate-Based Optimization

For the optimization problem, we assume that we are

given Q target drag coefficient values Aq, q E Q --

{1,...,Q}. The goal of the optimization is to find
the surrogate-predicted flap positions that minimize

the objective function,

pq = = argp  lS(p) -  ql, Vqe Q. (11)

The Q targets could represent different target lift co-

efficients during the flap deployment schedule, or re-

flect the goals at different flight conditions (e.g., take-

off and landing).

A posteriori Error Analysis

To present the predictability results, we must first

introduce the notion of a prediction neighborhood.

We begin with a pseudometric A(a,b) defined for
all (a, b) E f_ × f_, which determines a "distance" be-

tween two input points a and b. Then for any subdo-

main D C f_ we define the radius of :D about a point p

as rv(p) = maxp, E9 A(p, p'). The prediction neigh-

borhood located at point p with a p-measure of z,

P(p, z), is that (or a) region 79 C f_ of p-measure

z that minimizes r_(p). We assume that p lies in-

side P(p, z) and that 7_(p, Zx) C 7_(p, z2) for Zl < z2.

We can then show that, with probability greater than

1-_2, for all q E Q, regions F q C 7_ (pq, el) of nonzero

measure exist such that for all p' E Fq,

IS(p') - S(Pq)I -< e(Pq) • (12)

It now remains to bound e(p q) and make precise the
extent of F q.

Several bounds are possible on e(pq), which we de-

note the predictability gap. If we wish to bound the

predictability of each design individually, we find that

e(P q) < _(Pq,gl), Vq e Q, (13)

where, for p E f_ and 0 < z < 1,

E(p, z) = Ug(p, z) + 6(p, z), (14)

and

g(p,z)= max .q(P'), (15)
p'EP(p,z)

J(p, z) = max ],_(p') - S(P)I, (16)
p_ET_(p,z)

and U is the model prediction error from the valida-

tion step, Equation (8).

In addition to the joint estimates to the bound on

e(pq), we can also bound the average error over the

Q target designs. In particular, if we assume that the

_O(pq,el) are mutually disjoint, it can be shown that

o ]1
E e(Pq) < max E(p q,/3qel) , (17)

Q q=l -  ecQ q=l

where/3 = {/31,... ,/3Q}, and

L

CL= e  LIO <_1, I = = 1},
1=1

(18)
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is thesetof convexL-tuples. The "nonparametric

average" is relevant to multiple-target designs and

represents the average, as opposed to the worst-case,
estimate of the predictability. Also, it is important

to note that this predictability bound is calculated
entirely in terms of the inexpensive surrogate, S(p).

Finally, for a successful validation (i.e., #p(T) <

el), we can bound the expectation of the size of F q

with respect to the validation sample joint probability

density. The resulting bound is, Vq E Q,

1 ______2E I < < 1+ + (1 _2)"\ _i
(19)

The expression in Equation (19) bounds the average

p-measure of the region F q, with respect to _i, for

many validations.

Several advantages to bounding the errors only to

within a finite uncertainty exist, i9 First, we achieve a

sense of stability in that the estimates apply not only

to a single point, but to regions Fq of nonzero mea-

sure, assuring that many input points pq exist that

satisfy the error estimates. Second, for the multiple-

target case the estimates become sharper because

there is only a single uncharacterized volume of mea-

sure _i. Equation (17) is the upper bound for the

distribution of the single _i-sized uncharacterized re-

gion among the Q designs. This analysis results in

a bound on the average error which is less than the

average of the individual predictability gap bounds

£(Pq, _i). Finally, because our predictability analy-

sis is not premised on any particular set of points,

the designer has flexibility in the choice of the metric

A(a, b) (discussed further in the next section).

As mentioned in the introduction, the primary

drawback to the surrogate approach is the difficult

construction and validation of the surrogate in high

dimensional input spaces. We can easily illustrate

this point if we consider the uniform importance func-

tion p(p) and a neighborhood of p-measure Cl in the

input domain _ -- [0, 1] M. The neighborhood will

span at least _ii/M in one of the input directions which

rapidly approaches one as M -+ co. The loss of local-

ization as M --+ oc produces a corresponding loss in

predictability through 5(p, ei) in Equation (14). In
certain instances, the surrogate approach can be ef-

fectively applied to problems with high dimensional

input spaces. This includes cases in which the in-

puts are highly correlated (e.g., for shape optimiza-

tion where highly oscillatory geometries are not likely

optimizers 2°) or specialized formulations apply (e.g.,

Pareto formulations2i). In general however, the sur-

rogate approach is restricted to a moderate number

of design variables.

Summary of Surrogate Inputs

To summarize the surrogate framework description,

and to highlight the flexibility of the environment, we

note that four inputs to the process are determined

by the user. These are listed below:

i. An importance function p(p) : f_ _ _+.

ii. An error-scaling function _(p) : _ -_ _+.

iii. Two uncertainty parameters, _i and _2, that sat-

isfy 0 < si, _2 < 1.

iv. A pseudometric A(a, b).

Each input provides the designer with flexibility, and

allows the designer's experience to impact and im-

prove the final surrogate-predicted designs. Although

poor choices for the inputs do not influence the valid-

ity of the surrogate results, they greatly reduce the

sharpness of the results. A short description and ex-

planation of each input follows.

The importance function p(p) reflects the designers

prejudices in regard to the regions of f_ that are more

likely to contain optimizers. In this context, p(p)
is essentially a "prior" on _*. To serve this purpose,

p(p) is used as the probability density function in the

random selection of validation points in Equation (6).

A judicious choice of p(p) (one that is large in the re-

gions of the final designs and small elsewhere) can

significantly increase the sharpness of the a poster/-

or/error bounds. The increased sharpness is a conse-

quence of much better physical localization (in terms

of input variable extent) of the prediction neighbor-

hood :P(_*,61), which in turn reduces the surrogate

sensitivity contribution 5(P*,_i) to the error bound

in Equation (14).

The error-scaling function _(p) can be used by the

designer to reduce the impact of localized surrogate

errors on the error bounds of the final design. Be-

cause the model prediction error U in Equation (8) is

global, a large value of _(p) in regions for which the

approximation is poor will result in a reduced value
of the first term on the right-hand side of Equation

(14), provided that the final design does not lie in a

region where _(p) is large.
The uncertainty parameters si and 62 are related

to the number of validation points through Equation

(7). This formula allows the precise budgeting of re-
sources and ensures that useful solutions can be ob-

tained. In effect, Equations (7)-(10) describe what is
known in a continuous sense about a function based

on discrete sampling. Analysis of Equation (7) shows

that, asymptotically for small _1 and _2, N va in-

creases linearly as _1 decreases and only logarithmi-

cally as _2 decreases. This relationship suggests that

6
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althoughwecaneasily(intermsofvalidationsample
size)increaseour confidencein theresults(smaller
E2),refiningthelocalizationof ourresults(through
smallerEl) is muchmoredifficult.Thelocalization
hasadirectimpactonthefinalerroranalysisthrough
5(p,_1) in Equation (14). The relative difficulty in
further refining the localization illustrates the need

to intelligently select p(p) and where appropriate,

A(a,b), both of which can have similar effects on
the localization error.

The final input to the surrogate approach is the

pseudometric A(a, b). Because A(a, b) can be chosen

post-validation, various metrics can be examined, and
the most appropriate selected. One possible trade-

off is between design localization (in terms of input

variable extent) and predictability in terms of 3(p, _1)

in Equation (14). An example of the extreme of this
trade-off is the sensitivity minimizing metric

A(a, b) = I,S(a) - ,_(b)l (20)

used for the single-point design study of the results

section. This metric gives the lowest possible _(p, cl).

Improved Algorithms

Several, more sophisticated surrogate algorithms
have been developed s'12'17'19-23 but are not de-

scribed here. First, a surrogate formulation for noisy

outputs has been developed3 7 This formulation is

clearly appropriate in an experimental setting but
is not addressed here. Second, the multiple output

case can be efficiently handled, and the formulation

can be applied to model selection. Third, elemen-

tal decompositions of f_ are possible that yield lo-
cal errors and allow for rigorous construction/cross-

validation schemes. 24 Fourth, sequential and adap-

tive techniques have been developed that allow the

incremental deployment of resources to achieve tar-

get surrogate accuracies and that more tightly couple
the construction and validation phases of the baseline

algorithm. Finally, nested validation, in which a hi-
erarchy of models exists (e.g., an extremely expensive

"truth" model _ a high-fidelity model -_ low-fidelity

model), has been addressed as well.

Results

To demonstrate the surrogate framework, we have

applied it to the experimental design of multielement

airfoils; specifically, we are interested in determin-

ing the optimal location for the trailing edge flap,
based on the lift coefficient Ci in low-speed, high-lift

flight regimes. The M -- 2 design inputs to the prob-
lem p = (x, y) are the x and y positions of the flap,

measured from the leading edge of the main airfoil

element and normalized by the main element chord

c,nai, = 14.95 in. The output of interest is Cz. In ad-

dition, several other configuration and flow condition

parameters are fixed for the study. These parameters

are listed in Table 1 and are the Reynolds number Re,

the airfoil angle of attack a, the flap and slat deflec-

tion angles _f_ap and 3star, respectively, and the gap

and overhang of the slat (expressed as a percentage

of the nested chord c = 18.0 in.).

In this section, we first describe the method used

for the surrogate construction and report the vali-

dation results. Second, we consider the single-point

design problem of output maximization. Third, we

pursue a multiple-target design study which demon-
strates the increased sharpness of the nonparametric

average error results. Finally, we report the results

of on-line optimization studies and compare these re-

sults with the off-line, surrogate results.

Surrogate Construction/Validation

The construction sample set X c° consists of 119

input-output pairs that are uniformly spaced on a

17 × 7 grid. The (x, y) flap positions for the con-
struction sample are plotted as circles in Figure 4.

The input domain is divided into three subdomains,

f_ = f_l tJ f_2 U f_3, based on the flow conditions over

the flap. In the first subdomaln f_l, the flow over

the flap is attached, with the exception of the ex-

treme aft positions in which some trailing-edge sepa-

ration may be present (and desirable). In this region,

a radial basis function 25 serves as the approximation
method, which yields the surrogate 31 (p). In f_3, the

flow over the flap is fully separated, and a second ra-

dial basis function fit serves as the surrogate _3 (P).

In f_2, the resolution of the construction points is

not sufficient to determine the precise location of the

separation line. In this region,a simple linear tri-
angulation between ,_I(P) and Ss(p) is used as the

surrogate, S2(P). The error function, _(p), is set to

unity in _1 and f_3, and _(p) = 50 in f_2, reflect-

ing our uncertainty in regard to the location of the

Re 1,000,000
14 °

3ylap 30 °
5star -30°

gapsla_ 2.17%

overhangsta_ -1.46%

Table 1: Fixed design study parameters.
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Figure 4: Surrogate construction points and

the input ("design") domain.

separation line and, hence, our lack of confidence in

the quality of the surrogate in this region of the in-

put space. A three-dimensional surface plot of the

surrogate is shown in Figure 5.

To validate the lift coefficient surrogate, we must

select a set of random input points in fl and run the

experiment at each of these points to form the valida-

tion sample set A'va. The input points are confined

to the design space f_ described in the previous para-

graph and shown in Figure 4. Because the construc-

tion data were obtained simultaneously with the vali-

dation data, we had no expectation in regard to those

regions of the input space that would be of most inter-

est; thus, we used a uniform probability density func-

tion p(p) for the selection of the validation points.

We budgeted N va = 45 points for validation and, us-

ing the relationship in Equation (7), set el = 0.03

and _2 = 0.25. If we had known the form of the sur-

rogate prior to taking the validation data, we could

have restricted the design space to a more feasible re-

gion and perhaps chosen an importance function p(p)

that would have concentrated validation points close

to potential designs. The scaled model prediction er-

ror computed according to Equation (8) is U = .0482.
Note that the maximum un-scaled error does in fact

occur in Q2 as we presupposed and has a value of

0.4824. If we had chosen _(p) = 1 everywhere (in-

stead of as described above), our model prediction er-

ror would have been approximately one order of mag-

nitude larger, and would surely have overwhelmed the
results.

The surrogate just described and the related vali-

dation results serve for all of the designs discussed in

the remainder of this paper. One primary advantage

to using the surrogate approach is the fact that no

additional experimental data are required to bound

the errors of future designs that are pursued with

the surrogate. This characteristic, combined with

the negligible computational time required for each

surrogate evaluation, yields a highly flexible design

environment that does not sacrifice predictability.

Single-Point Design, Surrogate Maximization

For the first study, we pursue a single-point design

that maximizes the surrogate output. We set A suffi-

ciently large in Equation (2) and minimize the result-

ing function. To accomplish the optimization, we use

the unconstrained quasi-Newton optimizer that is in-

cluded in the optimization toolbox of Matlab 26. The

resulting surrogate-based optimizer is located at _* =

(x*,y*) = (.997,.036), and the surrogate-predicted

lift coefficient value at this point is S(_*) = 3.388.

The optimizer was started with an initial guess at

P0 = (.987, .033) and required 44 surrogate evalua-
tions to arrive at _*. Because the surrogate is inex-

pensive to evaluate (and because we are working with

only two inputs and can visualize the results graphi-

cally), we can verify that we do achieve a surrogate-

predicted global maximum. This verification would

be more difficult in a purely on-line optimization set-

ting if we did no begin the optimizer at multiple start-

ing points P0 until we had sufficient confidence that

a global maximum had been obtained.
Finally, we choose the sensitivity minimizing met-

ric A(a,b) = I,_(a)- ,_(b)l in Equation (20) and

perform the a posteriori error analysis for a single-

point design. We construct the prediction neighbor-

hood 7)(_ *, 61) around _* and find the surrogate sen-
sitivity parameter 5 = .0328. The optimal point _*

and the associated prediction neighborhood :P (_*, el)

are plotted in Figure 6. The resulting predictabil-

ity statement reads as follows: with confidence level

greater than .75, a region r C 7_(_*,¢1) of nonzero
measure exists such that for all p' 6 r

where

JS(p') - g(p*)l _< e(_*), (21)

e(_*) < Ug(p*,_l) + 6 = .0810. (22)

We see that the predictability is relatively good with

respect to the surrogate-predicted maximum lift co-

efficient, but quite poor with respect to the range of

lift coefficients of interest (i.e., corresponding to flap

positions in NI).

Multiple-Target Designs

For the second design study, we pursue a multiple-

target design. The motivation for such a study might

be an interest in examining the lift coefficient at

more than one point of the deployment of the flap.
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Figure 5: Three-dimensional mesh plot of the lift coefficient surrogate g(p).
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Figure 6: The surrogate-predicted optimizer,

_*, and the associated prediction neighbor-

hood, 79(_ *, el).

Specifically, we want to obtain two target lift coef-
ficients: A1 = 3.31 and A2 = 3.25. Isocontours of

the surrogate indicate that a locus of points in f_ ex-

ists for each target that exactly satisfies the design

goals. We arbitrarily select one point for each design:

pl = (x[ll,y[l]) = (.987,.033) and p2 = (x[2],y[21) =

(.975, .029). Around each optimizer, we construct a

prediction neighborhood chosen from the family of el-

lipses that have area equal to el, are centered at pq,

and are oriented such that they minimize surrogate

sensitivity _(pq,el). The optimizers and associated

prediction neighborhoods are plotted in Figure 7.

For each of the designs (q = 1, 2), we can state

with confidence level greater than .75 that a region

rq C P(Pq,gl) of nonzero measure exists such that

for all p' E r q

I,_(p q) - S(p')[ < e(pq), (23)

where

e(p 1) = U + j(pl, el). = .0482 + .0198 = .0680, (24)

and

e(p 2) = U q- _(p2, el) = .0482 + .0201 = .0683. (25)

The above bounds jointly hold on each design. We

obtain a slightly sharper bound on the average error

of the two designs:

l[e(p ) + _< + = (26)e(p2)] U .0149 o06_1@

The increased sharpness results from an analysis of
the worst-case distribution of the uncharacterized re-

gion between the two prediction neighborhoods. Be-

cause of the low sensitivity of the surrogate in each of

the prediction neighborhoods relative to model pre-

diction error U, the improvement is slight.

Comparison with Direct Insertion

To date, cases at identical flow conditions have not

been examined with both on-line (the method of

steepest ascent) and off-line (the surrogate approach)
optimization methods. However, rough comparisons

of the resource requirements are of (guarded) use.

The on-line results have been reported in an ear-

lier paper by Landman and Britcher. 4 In that effort,

they found the optimizer to be very robust (successful

in 6 out of 6 attempts) and insensitive to the initial

guess. For each case, they started the optimizer at

in initial flap position with a low Cl value and ob-

tained a final value within approximately 0.7 percent

of the maximum Ct value in approximately 20 opti-

mizer steps, requiring approximately 60 experimental

9
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data points (3 points per step). With the surrogate

method, we required 119 points to construct the sur-

rogate and an additional 45 for the validation, for a

total of 164 experimental data points. For the max-

imization problem, the a posteriori error bound was

2.4 percent of the maximum surrogate value.

While the surrogate approach seems to compare

unfavorably to the on-line method, several subtleties

lie in its favor. First, for designs chosen with the

validated surrogate in the future (e.g., the multiple-

target design examined in this paper), similar error

bounds still apply and do not require additional ex-

perimental data. In contrast, the on-line approach

would require additional experimental results. Sec-

ond, a total of 60 evaluations to obtain an optimal

point with the on-line method can deceptive; to be
assured that the result is indeed optimal, additional

information is required. The additional information

for the study cited was in the form of contour plots

of a matrix of data. If visualization is not possible,

a number of optimizer restarts would be required to

be assured of an optimal. Third, in cases for which

the objective function is less forgiving, restarts of the
on-line optimizer would be unavoidable, which would

further increase the required experimental data to a

level surpassing that of the surrogate approach. Fi-

nally, the obvious difficulty in pursuing on-line opti-

mization is related to the ultimate application; if the

intent is to incorporate the data as a portion of a

larger optimization study, no alternative is available

other than to store the experimental data for later

use and extract with some form of an approximation.

If one is restricted to a purely experimental setting,

then the ability to quickly, and automatically, find

optimal operating points with the on-line optimizer

is highly advantageous.
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